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Abstract. A vertex renormalised self consistent graph model for a quantum spin system 
is presented with the ordering transition temperature appreciably lowered from the classical 
value for a small spin quantum number I. The model applies e.g. to the dipole-dipole 
interaction in addition to the exchange interactions. The derivation is restricted to zero 
external field. 

1. Introduction 

The properties of simple models such as the Gaussian model or the spherical model 
have long provided guidelines to the thermodynamics of magnetic phase transitions 
to theoreticians and experimentalists alike. A great deal of effort has gone into the 
systematic first principles derivation of such model results and hopefully improved 
versions of the same mostly with the aid of (diagrammatic) cluster expansions (Wortis 
1974). 

Recently the problem of evaluating magnetic transition temperatures starting with 
more or less precisely known interactions has become interesting in the context of 
nuclear spin systems (Ehnholm et a f  1979, Kubota et a f  1980). The extension of 
high-temperature series expansions is tedious if the spin-spin interaction is not restric- 
ted to the nearest-neighbour exchange. We have therefore been led to be interested 
in models of the type described above for quantum spin systems. It is not trivial to 
include the quantum nature of the spins in the popular models mentioned above. In 
the Gaussian model, spin commutators make the renormalisation of the bonds or 
vertices of the relevant diagrams difficult as a way of improving on it. The spherical 
model is essentially a vertex renormalised version of the Gaussian model for Ising 
(commuting) spins. Stinchcombe eta1 (1963) have taken the diagrams of the spherical 
model to obtain a formal vertex renormalisation for quantum spins. Unfortunately 
the result reduces to the spherical model in the absence of an external magnetic field. 

In this paper we derive a vertex renormalisation for a quantum spin system with 
nontrivial consequences for the transition temperature as a function of 1(1 + 1). Our 
renormalisation is equivalent to that of Horwitz and Callen (Horwitz and Callen 1961) 
in the classical limit. We make one further approximation in the quantum case 

9: Present address: Physics Department, Carnegie-Mellon-University, Pittsburgh, PA 15213, USA, 
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concerning the permutability of spin operators in a given graph which involves only 
a part of the graphs and which probably does not affect our prediction of T,. The 
critical properties of our model are essentially the same as those of the spherical 
model and independent of the spin quantum number in agreement with the expectation 
that the spin quantum number is an 'irrelevant' variable (Kadanoff 1976). 

We find that a quantum spin should lead to a lowered transition temperature in 
general. Compared as it stands with the classical and spin-k nearest-neighbour Heisen- 
berg model results from high-temperature series expansions (Rushbrooke et a1 1974), 
the present calculation delivers too low a T, for both. This is not too alarming as the 
quantum spins certainly make impossible even an approximative bond renormalisation. 
The vertex renormalisation is insufficient for short-range interactions. However, in 
view of the simple structure of our results, one can make the statement that it should 
be possible to simulate the bond renormalisation with some ad hoc procedure to shift 
upward the transition temperatures and thus describe correctly the classical and the 
spin-$ Heisenberg models. In this sense we seem to describe the quantum effects 
correctly. The accuracy of our model is also improved for long-range interactions. 

Our derivation is limited to zero external field. The free energy is thermodynami- 
cally consistent in the sense discussed by Englert (1963) as the fluctuation of the 
(staggered) magnetisation is equal to the susceptibility by construction. This is not 
true in general for pure vertex renormalisations of the Horwitz and Callen (1961) 
type. In the case of the classical Heisenberg model our result is independent of the 
spin dimensionality, d .  We thus do not get the expected spherical model behaviour 
in the limit of infinite d. The discrepancy would nevertheless be small in any conceiv- 
able practical case. At the high-density limit we correctly recover the spherical model. 

2. Single diagram contribution 

In this section we derive the contribution of one Husimi tree diagram in the expansion 
of the free energy. No external field is included so the calculation applies only above 
the critical temperature. We obtain an approximate general expression for a quantum 
spin system which reduces to the classical zero-field result at the appropriate limit, 
I+m.  

The Hamiltonian is given by 

H = -f c JipIPIp (2.1) 

with sum implied over repeated Greek spin indices. The coupling J:' must have a 
particular symmetry, essentially cubic, to be specified later (equation (2.9)). The spin 
operators obey the usual commutation relations 

i,i 

[I:, 171 = is*pyI~~ii. (2.2) 

We calculate the free energy from the moment expansion (Rushbrooke er al 1974). 

" 1  
n = ~  n !  

-pF = N 10g(21+ 1) + 1 -((-pH)") (2.3) 

with the expectation value 

(0) = TrN(0)/(21 + l)N (2.4) 
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where the trace is calculated over the (21 + l)N-dimensional phase space without a 
density operator. It is customary to do the bookkeeping of the different combinations 
of Hamiltonians in (2.3) with diagrams in which each line (bond) corresponds to one 
coupling J;’ and each point (vertex) to the trace of spin operators at a lattice site. 
In the lattice sum no two lattice indices may coincide as this would lead to a different 
diagram. For example, diagram ( j )  in figure 1 would duplicate diagrams ( a )  and (b) .  
Irrespective of the indices in the lattice sums, the total effect of spin traces in a given 
combination of Hamiltonians can be expressed as a single factor. The components 
of a given disconnected diagram are not independent as a result of the restrictions 
on lattice sums. The diagram ( j )  in figure 1, say, is not completely cancelled in the 
free energy expansion (2.3). The restrictions on the lattice sums of disconnected 
diagrams thus lead to connected contributions. These would be taken into account 
in the definition of the cumulant (Rushbrooke et a1 1974) but the moment expansion 
turns out to be more suitable for our specific purposes. 

(g l  l h )  01 (fl ( k I  

Figure 1. All fifth-order diagrams. Diagrams having vertices with only one impinging 
bond are not included as the trace of a single spin operator is zero. Spin traces additionally 
eliminate diagrams ( f )  and (g). 

We select the ‘Husimi trees’ (see Domb 1974) to work with. They consist of loops 
of bonds in such a way that each bond belongs to only one loop. In figure 1 all 
fifth-order diagrams are displayed, out of which ( h ) ,  ( i )  and (k) are included in 
our analysis?. Disconnected diagrams contribute only via the corrections on account 
of the restrictions on the lattice sums (of equation (2.15)). We will return to our 
particular choice of diagrams in § 3. Roughly speaking one can say that the Husimi 
trees dominate the free energy expansions above the critical temperature in zero 
magnetic field. 

Let us now calculate the contribution of the diagram in figure 2. There are n !/g 
different ways of assigning the n Hamiltonians (-OH) to the bonds of the diagram 
where g is the symmetry number (Domb 1974) dividing the contribution with the 
number of configurations which do not change the topology of the diagram. We 
calculate a trace over the spin operators at each vertex and sum over the lattice sites 
for each permutation. These n !/g terms are then added to give the total contribution 
of a diagram (for details, see Rushbrooke er a1 1974). The restrictions on the lattice 

+The double bond is also taken to be a loop. 
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Figure 2. A general Husimi tree. Individual bonds are not shown: each loop may contain 
an arbitrary number of bonds. 

sums are ignored for the time being. With the fourier transform 

rij)J;' (2.5) 
1 

J"'(k) = - 1 exp(ik 
N i.j 

and its inverse 
I .  

(2.6) exp(-ik rij) 

the loop ' U '  of m vertices in the diagram of figure 2 gives the effective coupling 

1 m m-1 

If::,, = (t) (y )  d3kJaY(k)J"(k) .  . . J"'(k) (2.7) 

for each permutation of the Hamiltonians. The spin trace 

Tr(I"1') = $I ( I  + 1)s"' = c2S"' /3  (2.8) 

is included in equation (2.7). In addition to the effective coupling, the loop 'a '  has 
the spins I" and I o  operating on the articulation vertex connecting the loop with the 
rest of the diagram. They are not explicitly shown in equation (2.7) as their relative 
position with respect to the other spins at that vertex depends on the particular 
permutation of the Hamiltonians. 

The coupling Je' is now required to be such that Hz:,m is independent of the 
spin indices a and p 

H:{,m = ~ " ' ( C T ~ / ~ ) ~ - ' J ~ .  (2.9) 
This holds for isotropic exchange interactions and also, on a cubic lattice, for the 
dipolar interaction+. The trace of spin operators is non-zero only if the components 
{ I x ,  I ' ,  1') occur in it either all odd or all even numbers of times (Ambler et a1 1962). 
The articulation vertex of the loop ' U '  then carries a delta function in spin space in 
addition to the trace depending on the particular permutation. We can repeat the 
above argument for the other loops as well to arrive at the conclusion that each 
assignment of the Hamiltonians to the bonds in a diagram (of k loops, {Zi}f=l bonds 
and r vertices) contributes to the free energy 

(2.10) 

Tr(I),  represents the trace at the vertex i for the particular permutation. 

t In fact one should require the macroscopic sample to be a sphere for (2.9) to hold for the dipole-dipole 
interaction whose k = O  component depends on the shape of the sample. In the integral (2.7) this may be 
ignored, however (cf Griffiths 1968). 
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Neglecting the restrictions on the lattice sums, the total contribution of one Husimi 
tree is 

(2.11) 1 k  1 
((-PH)") = N  c [ 2" n (Jd 3" f I  [T r (O , /W+ 1)l) 

{ P i  1 = 1  I=1 

where the sum is over all the n!/g permutations of the n Hamiltonians. These 
permutations only affect the spin traces. Thus the permutations can be approximately 
replaced by permuting just the spin operators. Permutations of Hamiltonians obviously 
affect the spin traces at the articulation vertices but the two spin operators from each 
loop carry the same spin index. Thus their relative order is immaterial. In a large 
portion of the Husimi trees this allows enough freedom to make the modification 
exact. In the rest of the diagrams, the modification is approximate and we will return 
to it in § 3 and in appendix 2. The approximate form of (2.11) is 

(2.12) 

where the sum is over the (2n)! permutations 
follows that 

where 

of the individual spin operators. It 

(2.13) 

I"I"). (2.14) 

In equation (2.13) 2vi is the number of bonds impinging on the vertex i, and in 
equation (2.14) the sum is over the permutations of the corresponding spin operators. 
A recursion relation of the spin trace 

We now return the restrictions on the lattice sums. To account for them we have 
to subtract all the restricted sums with two, three, etc. lattice indices set equal (Percus 
1971). With the restrictions indicated by a prime this reads 

is derived in appendix 1. 

(2.15) 

The spin traces must be calculated before this step. In order to be consistent, we 
keep track of those corrections only whose lattice sums can be expressed in terms of 
the effective coupling J1. According to an entirely topological argument of Horwitz 
and Callen (1961), this is equivalent to 'opening't the vertices of a given tree in all 
possible ways to produce either connected or disconnected Husimi trees and subtract- 
ing these terms from the spin trace C. In disconnected diagrams only those terms are 
kept on the right-hand side of equation (2.15) which the delta functions force con- 
nected, The restricted lattice sums can thus be made unrestricted by replacing the 
spin traces with new effective traces X. 

+ T h e  meaning of 'opening' becomes obvious by considering the procedure (2.15) with the spin traces. 
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Consider opening the spin trace u2,, into u2" and u2in-u). One has to choose at 
least two distinct indices out of the 2n to get a connected contribution as each loop 
corresponds to two identical spin indices. As 

Tr(I"l". . . Ip16)  Tr(I"IY. . .I'16) 
= Tr(I"1". . ,Ipl") Tr(ISIY.  . .I'16) 

the connected contribution is 

n - 2  
U - 1  

(2.16) 

(2.17) 

The effective spin traces arise because of the recursive nature of (2.15). The discon- 
nected contribution is readily found to be 

-( ;) X 2 o Z 2 i f l - v ) .  

A straightforward generalisation leads to 

nl 
/ = 1  

(2.18) 

(2.19) 

Here we sum over all the combinations { v i }  such that 

energy expansion is 

vi = n. 
In conclusion, the approximate contribution of a single Husimi tree to the free 

N n !  
i = l  i = l  

where 

d3Wap(&)JPY(k) .  . . J""(k).  

(2.20) 

(2.21) 

In the diagram there are k loops of li bonds (Xi"=, li = n )  and r vertices with 2vi 
impinging loops vi = a ) .  In equation (2.20) a Husimi tree refers to a diagram 
in fourier space, not on the real lattice. Defining the eigenvalues of the matrices 
JUp (k) as A,(k)  we arrive at 

(2.22) 

The simplicity of the expression (2.20) with the effective spin traces Z is the reason 
for which we chose to use the moment expansion as opposed to the cumulant 
expansion. 

In the customary linked cluster expansion of the quantum Heisenberg model, the 
spin traces Z are replaced with time-ordered semi-invariants, This limits practicable 
calculations to much more restricted sets of diagrams than ours. Typically then the 
quantum and classical systems differ above the transition temperature only in the case 
of non-zero external field. In our expansion the spin traces Z bring about an essential 
difference between the two. The extension of the free energy expansion to high orders 
is straightforward. 
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3. The sum of the Husimi tree diagrams 

An analytic expression for the free energy can be derived by extending the sum of 
the Husimi trees to infinite order. The procedure leads to two coupled equations via 
which the spin quantum number and the spectrum of energy eigenvalues determine 
the thermodynamics of the system. In this section we also consider the non-Husimi 
diagrams left out of our analysis. This section is closely parallel to the Ising model 
discussion of Horwitz and Callen (1961) henceforth referred to as HC. We thus 
concentrate on the main lines and refer to the HC paper for details. 

The contribution of a single diagram, equation (2.20), is extremely useful in that 
one can generate all the Husimi trees by just successively adding new loops. The 
blind application of such a method results in overcounting of diagrams. One cannot 
compensate for this by means of the symmetry numbers g. The HC procedure (which 
is not restricted to the Ising model) generates diagrams in two separate sequences 
starting from two different sets of basic elements (either 'hyperbonds' or 'hyperver- 
tices'.) The difference of these two expansions gives the correct free energy. It is 
then assumed that one may exchange the order of the sum over the number of bonds 
in a givgn loop and the integral in equation (2.22). After a little algebra the free 
energy emerges as 

- /3F=Nlog(21+1)-- / -  N d3k log( 1 -/3L(k)uzxo 
2 vk a = l  3 

R and xo are given by the coupled equations 

(3.3) 

The factor R describes the effect of adding one loop of all lengths to a vertex, save 
the change in the spin trace of that vertex. xo then accounts for the adding of several 
loops. The functional dependence of xo on R is determined by the spin quantum 
number. On the other hand, R as a function of /3x0 measures the eigenvalue spectrum. 
The last term in the expression (3.1) compensates for the overcounting. The HC free 
energy of the Ising model is analogous to (3.1). 

The following expressions for the entropy and the specific heat are easily derived 

SINkB = log(21+ 1) - / log( 1 - P A a  (k)uzxo/3) 2 vk a = l  

(3.4) 

CINkB = - ?/3 (d/d/3 )(Rxo) + ?&o. (3.5) 
For the staggered susceptibility ~ ( 4 )  in zero field we have to include the Zeeman 
interaction 
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in the Hamiltonian of equation (2.1). Here B is the scaled external field. The free 
energy expansion is then composed of diagrams with two Zeeman bonds in addition 
to the original spin-spin bonds. Within the Husimi tree approximation this expansion 
arises from the zero-field expansion when we choose in turn each vertex of the original 
diagrams with twu bonds impinging on it. These two are then replaced by Zeeman 
bonds. There will be no overcounting as the chosen vertex is a root (see Domb 1974). 
The loop with the Zeeman bonds does not satisfy equation (2.9), but this is of no 
consequence as the other loops still do. The free energy is given by 

(3.7) 

where we have taken a staggered external field B =Be^= parallel to an eigenvector of 
the fourier transformed spin-spin interaction and with this vector as its wavenumber. 
The zero-field susceptibility readily emerges as 

X-'(q) = (pUzXo/3)-' -Az(q) .  (3.8) 

Choosing q as belonging to the maximum eigenvalue, A m a x ,  the staggered susceptibility 
gives the critical point 

(3 -9) 

where T,"' is the mean field estimate. This is also a singular point of the factor R 
(equation (3.3)). R must remain finite at the critical point to keep the free energy 
finite. The thermal properties of the system thus display only a weak singularity (at 
T, the specific heat is C/h%, = 3Rxo/2). 

We defer to the next section further discussion about the properties of our model 
and its comparison with other results. Instead we now return to the two approximations 
made in § 2. First consider the choice of the Husimi diagrams. There is a sum implied 
over the lattice for each vertex in a diagram. One thus expects diagrams with the 
largest number of vertices to dominate. This holds exactly for long-range interactions 
with high effective coordination numbers (cf Brout 1961). For a given number of 
bonds, the diagrams made of chains of bonds thus seem dominant. We note that a 
vertex with only one line impinging on it will make a diagram vanish, as the trace 
over a single spin operator is zero. Most vertices with an odd number of bonds also 
eliminate a diagram because of the antisymmetric properties of the spin traces. These 
are the basic facts leading to the choice of the Husimi trees. 

The leading correction to the Husimi diagrams would be the inclusion of multiple 
bonds. Consider replacing the central bond in figure 3(a )  with a doublet (figure 3(b)). 
The central single bond gives the Hamiltonian 

PJa' ( q ) 1 3 $  (3.10) 

1 keTC = ~ A , , x ~ z ~ o ( T c )  = Xo(TJkeT," 

( U )  ibl 

Figure 3. The indices shown refer to lattice sites (see text). 
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and the double bond, the effective one 

(3.11) 

if the adjacent bonds are single. The dominant contribution of (3.10) to the loop 
integral JI (equation (2.20)) arises from the maximum eigenvalue of J"*(4) ,  Am=. 
Thus pJ"'(4) is the order of magnitude of unity or less in the critical region. One 
expects the contribution of (3.11) to be essentially smaller as the integral includes the 
smaller eigenvalues. On the other hand, the effect of one double bond grows larger 
with the number of bonds, one of which may be doubled. For the dipole-dipole 
interaction on the FCC lattice, we get the free energy contributions -0.29 (P/ptf)3 
and 0.0014 (p/p;f)4 corresponding to the diagrams p\, and A. The 

double bond becomes important in diagrams with roughly 600 bonds for /3 =prf.  
One would certainly get a large correction even fairly far from the critical temperature 
by adding all the multiple bond (i.e. ladder) diagrams. It is clear then that the Husimi 
trees are severely inadequate in the critical region. Their representativity is much 
better at higher temperatures where only diagrams of low orders in p are important. 
On comparing the entropy of equation (3.4) with the exact high-temperature 
expansion for copper ( I = 3 / 2 )  (Niskanen and Kurkijarvi 1981) we found good 
agreement down to temperatures of twice the mean-field critical point, below which 
the available expansion does not give the entropy accurately. 

The second approximation of 5 2 is the factorisation of the spin permutations. As 
we concentrate on the quantum effects on T,, we do not believe this approximation 
to be critical. The corrections would be haphazard, positive or negative on a rather 
regular series of contributions which leads to equations (3.1)-(3.3). It seems highly 
unlikely to us that such corrections could affect the critical point of these equations 
or introduce new singularities. We expect in fact the spin factors of any spin trace to 
be exact to two orders of X2 with apparently small errors in higher orders as discussed 
in appendix 2. 

4. Results 

In this section we discuss quantum spin effects on the thermodynamics of the system, 
particularly in the critical region. Our results are consistent with earlier calculations. 
The quantum system has a definitely lower transition temperature but is otherwise 
not different from the classical. 

Consider first the expansion with only simple loops included, leading to the 
Gaussian approximation. The free energy is then given by 

and we see that the free energy of equation (3.1) reduces to the Gaussian free energy 
if we set 

x 0 = 1  and R = O .  (4.2) 
At the critical point (T = Trf ) the Gaussian model behaves in an unphysical fashion 
(cf Brout 1960). In particular, the order parameter (staggered magnetisation) diverges, 
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Our expansion is essentially a vertex renormalisation of the Gaussian approximation 
like that of Horwitz and Callen (among others). One can say in general that vertex 
renormalised linked cluster expansions reduce the fluctuations of the order parameter 
and result in more reasonable thermodynamics. 

In order to extract the thermodynamics from our calculation, we need the quantities 
,yo and R of equations (3.2) and (3.3) as functions of p. Equation (3.3) allows us to 
calculate Rxo as a function of pxo for each interaction and lattice. The integral must 
be evaluated as a series expansion of @,yo; numerical integration with a discrete 
eigenvalue spectrum would lead to a divergence at the critical point because of the 
singularity there. The series expansion can be analysed with methods described by 
Joyce (1972). From the expansion of equation (3.2) we can then calculate Rxo as a 
function of x0 alone. For R L 1 the expansion was analytically continued with Pade 
approximants (see e.g. Graves-Morris 1973). Rxo as a function of ,yo is plotted in 
figure 4 for representative values of the spin quantum number I. All in all, we know 
xo and R as function of p, i.e. we have the full thermodynamics of the system. 

0 
x 
Q 

XO 

Figure 4. Rxo as a function of ,yo (equation (3.2)) for representative values of the spin 
quantum number I. SM denotes the spherical model result, equation (4.5). The arrows 
on the vertical axis display (Rxo),, for the cubic lattices. The arrows on the horizontal 
axis give the best known estimates of xOc (via equation (4.3)) for the Heisenberg models 
I = 1/2(H(1/2)) and I = m(H(m))  (Rushbrooke er a1 1974). 
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In figure 4 we see that quantum spins affect the behaviour of the system appreciably. 
The maximum of Rxo gives the critical value of xo, xOc, and the critical temperature 
as 

Watson has calculated ( R x ~ ) ~ ~  for the nearest-neighbour interaction on cubic lattices 
(Joyce 1972). These are indicated by arrows on the vertical axis of figure 4. The 
most accurate Tc’s for the quantum Heisenberg nearest-neighbour interaction model 
have been provided by Rushbrooke et a1 (1974). These results, as interpreted via 
equation (4.3), are included in figure 4. Our model gives too low a T, for all the cases 
included. If the maximum of RXO were lower, say -0.37 for the sc lattice, our 
calculation would give correct Tc’s for both I = 00 and I = f. We thus conclude that 
some simple imitation of the correct bond renormalisation should exist which would 
make our calculation a reliable tool for predicting T, in the presence of quantum 
effects. For the Ising I = f model our results agree with the zero-field limit of Horwitz 
and Callen. 

It is interesting to take a look at the spherical model (SM) result (see Joyce 1972, 
for a review). The SM free energy is 

with 

Rxo=(1/xo)-l (4.5) 
to be compared with equations (3.1)-(3.3) of the Husimi expansion. The spherical 
model (SM) was initially derived for the Ising model (Berlin and Kac 1952) but there 
is nothing in the diagrammatic version of Brout (1961) which should make it different 
from the (quantum) Heisenberg model in zero external field above the transition 
temperature. In fact the only previous quantum vertex renormalisation is based on 
the same diagrams as SM (cf Stinchcombe er al 1963). The SM counts only a subclass 
of all the Husimi tree diagrams. In spite of this inferiority in terms of diagrams, the 
SM is essentially as good as our renormalisation for a classical spin system, as the SM 

result for Rxo agrees closely with the Heisenberg model I = 00. For a quantum system, 
the vertex renormalisation of SM is clearly inadequate. This also holds for the ‘quantum 
SM’ of Stinchcombe et at (1963). It should be mentioned that there is a limit at which 
SM is actually better than our seemingly more exact calculation. This is the classical 
d = 00 limit? where our model cannot distinguish between d = 3 and d =CO.  Our 
approximation puts the d = 00 limit on the line I =CO of figure 4 rather than on the 
SM line where it belongs according to the exact proof of Stanley (1969). 

The critical indices of our model are, in close agreement with SM, entirely deter- 
mined by the density of energy eigenvalues of the mean-field phases at the upper 
edge of the spectrum. Thus a transition is predicted to the mean-field structure. 
Assume the density of states near the edge E = 1 given by (cp < 1) 

g ( E )  = g , ( l - e ) ‘ P + ~ [ ( l - ~ ) ( P + l ] + n ~ n ~ i n g u l a r  terms. (4.6) 

A little manipulation then leads to 

Y = 1l(P (4.7) 

+ Here d is the dimensionality of the spin space. 
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as in the spherical model (see Joyce 1972). Our expansion, however, does not predict 
a diverging temperature derivative of the specific heat at T, in contrast to SM. For 
long-range interactions we get y = 1 in agreement with the exact mean-field result. 
For nearest-neighbour interactions in cubic lattices, the SM result is y = 2 (Joyce 
1972) which is far from the best estimates y 5/4 . . .4/3. 

5. Conclusion 

We present an approximate vertex renormalisation for a rather general quantum spin 
model. The results, restricted to the case of zero external field, display essential 
differences between the quantum and classical systems which are not present in the 
renormalisation of Stinchcombe et a1 (1963). The transition temperature estimates 
depend appreciably on the spin quantum number I. 
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Appendix 1 

In this appendix a recursion relation is derived for the spin trace U defined in equation 
(2.14). Let us denote the spin operator I” with the index a only. uZm is then defined 
as 

with m indices {a, p, . . . w } .  We can calculate u2m+2 by adding to uZm two ‘new’ spin 
operators R in all possible ways. Define an auxiliary function of the permutations 
{P’} of the 2m ‘old’ spins 

P Z m ( j )  = 1 Tr(&app. .  . R . .  . w w ) .  (A21 

In PZm(j) there are j (or equally 2m - j )  old spins between the new. Because of the 
invariance of a trace in cyclic permutations 

(P’) 

Using the commutator relations (2.2) and the definition (A2) we get 
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It is easy to prove by induction that 

where 

21+2 

k = - 1  
fo(L I ) =  IJ ( j - k ) / ( W ! -  

Therefore the spin trace is given recursively by 

+ ( 21:m)  (Tzu21 - ( 21-m + - 1  ) UZ1] 

with the definition 

( P i " )  = 0 
if p < 0 or q <O.  (-48) 

Table 1. The exact mean reduced traces of Rushbrooke er d (1974) (they use X for u2) 

compared with our approximate results for some diagrams. We have omitted the inessential 
symmetry factors. 

Diagram Mean reduced trace Our result 
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Appendix 2. 

Rushbrooke el al (1974) have calculated the exact contributions of the quantum spins 
for diagrams with eight bonds or less (with a pure exchange interaction). We list their 
mean reduced traces in table 1 together with our approximate spin traces for some 
representative diagrams. On the basis of the table we conjecture that the error in the 
spin traces of any Husimi tree is small, of the order of magnitude 0.1 gi2. 

We have also studied the breakdown of our approach in several diagrams. On 
that basis it seems safe to state that our result is correct for all diagrams with no loops 
containing only articulation vertices. We have, however, not proved any general 
theorem about the accuracy of our spin factorisation. 
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